Surfaces of Constant Gauss Curvature in Lorentz-Minkowski Three-Space
نویسندگان
چکیده
منابع مشابه
Surfaces of annulus type with constant mean curvature in Lorentz-Minkowski space
In this paper we solve the Plateau problem for spacelike surfaces with constant mean curvature in Lorentz-Minkowski three-space L and spanning two circular (axially symmetric) contours in parallel planes. We prove that rotational symmetric surfaces are the only compact spacelike surfaces in L of constant mean curvature bounded by two concentric circles in parallel planes. As conclusion, we char...
متن کاملTranslation Surfaces of the Third Fundamental Form in Lorentz-Minkowski Space
In this paper we study translation surfaces with the non-degenerate third fundamental form in Lorentz- Minkowski space $mathbb{L}^{3}$. As a result, we classify translation surfaces satisfying an equation in terms of the position vector field and the Laplace operator with respect to the third fundamental form $III$ on the surface.
متن کاملA Family of Maximal Surfaces in Lorentz-minkowski Three-space
We prove the existence of an infinite family of complete spacelike maximal surfaces with singularities in Lorentz-Minkowski three-space and study their properties. These surfaces are distinguished by their number of handles and have two elliptic catenoidal ends.
متن کاملEntire spacelike hypersurfaces of prescribed Gauss curvature in Minkowski space
which gives an isometric embedding of the hyperbolic space H into R. Hano and Nomizu [11] were probably the first to observe the non-uniqueness of isometric embeddings of H in R by constructing other (geometrically distinct) entire solutions of (1.1)–(1.2) for n 1⁄4 2 (and c1 1) using methods of ordinary di¤erential equations. Using the theory of Monge-Ampère equations, A.-M. Li [12] studied en...
متن کاملConstant angle surfaces in Minkowski space
A constant angle surface in Minkowski space is a spacelike surface whose unit normal vector field makes a constant hyperbolic angle with a fixed timelike vector. In this work we study and classify these surfaces. In particular, we show that they are flat. Next we prove that a tangent developable surface (resp. cylinder, cone) is a constant angle surface if and only if the generating curve is a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2003
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181069938